FIRE SYSTEMS CATALOG

Tayfur Water Systems, which was established by Tayfun Yazaroğlu in 2004 in Izmir. We continue our activities as "Tayfur Water Systems Machinery Engineering Industry and Trade Inc." since 2017.

Our company offers its products and experiences to the local market and international market. Tayfur Water Systems, while strengthening its recognition abroad, continues to expand its production, sales and marketing activities every day.

Our engineers and technical staff, technological infrastructure, manufacturing, sales, project-consulting, contracting and service planning meets the requirements of the sector.

Our company manufactures "TYPHOON" brand, hydraulic control valves, plastic hydraulic control valves, backwash valves, plastic backwash valves, impact-free dynamic suction cups, plastic suction cups, bottom clamps, filter reverse flushing control devices. It is progressing towards becoming a strong brand in both domestic and foreign markets by meeting the special demands of its domestic and foreign customers.

Our Quality Policy

In order to be a leader in quality in the sales, marketing and service sector by complying with legal conditions and to comply with the requirements of Quality Management System in order to meet the needs and expectations of our customers, to continuously improve the efficiency and to not compromise the quality under any circumstances.

Our Mission

To be a company aiming to present its synergy in the national and international market which has always taken its responsibilities, desires and expectations of our customers in a correct, reliable and timely manner, within the framework of high quality standards, transforming efficiency and competition into an advantage...

Our Vision

To be a leading, innovative, powerful and reputable enterprise in its sector.

Flanged - Threaded - Angled - Victaulic

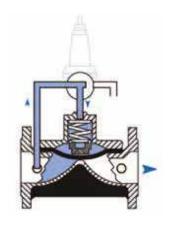
Typhoon hydraulic control valves are automatic valves with direct diaphragm shut-off working with line pressure. It is a comfortable, smooth flow in the minimum pressure loss of the body and diaphragm, which is kept in the foreground in its design.

In hydraulic control valves, worn parts such as shafts, bearings and bushings are longevity. The single moving part of valves is the diaphragm.

TYPHOON hydraulic control valves, in-line drinking water pump, agricultural irrigation, fire systems, filtration, industrial, etc. designed for use in areas.

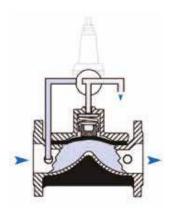
100	
	<i>(</i>

М	Manually Controlled Valve
171	wantadily controlled valve
PR	Pressure Reducing Control Valve
PRPS	PressureReducing + Pressure Sustaining Control Valv
PS	Pressure Sustaining Control Valve
PREL	Pressure Reducing + Solenoid Controlled Valve
EL	Solenoid Controlled Valve
QR	Quick Relief Control Valve
FL	Float Level Control Valve
FLEL	Electric Float Level Control Valve
DIFL	Differential Float Level Control Valve
PC	Pump (Booster) Control Valve
DPC	Deep Well (Submersible) Pump Control Valve
SA	Surge Anticipating Control Valve
HD	Hydraulic Check Valve

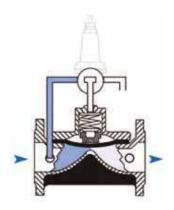

Fire Systems

Working Principles

They are automatic control valves which are used hydraulically to perform the desired operations with line pressure without the need of energy sources in the mains line.


Valve Closing Mode

When the pilot discharge position on the main control valve in the closed position is reached, the pressurized water on the diaphragm of the main control valve is drained. When the line pressure reaches the position of spring force, hydraulic force is applied to the diaphragm of the control valve under water, so that the valve is in full open position.


Valve Opening Mode

When the pilots on the main control valve reach the water pressure diaphragm, the water creates a hydraulic force. The resulting hydraulic force combines the diaphragm with the force applied by the spring to create a complete seal and close.

Modulation Mode

These are the pilot valves which are connected to the control valve which allows the main valve to operate in this position. According to the amount of flow and pressure to be adjusted, the water pressure on the diaphragm is controlled constantly, allowing it to operate in a modulated position.

Flanged

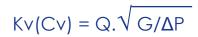
Conne	ection	Material		Material Body			Transmition Pressure			
Flan	iged	GGG40 Globe					PN10 - PN16 - PN25			
				Available Diameters						
mm	50	65	80	100	125	150	200	250	300	
inch	2	2½	3	4	5	6	8	10	12	

Threaded

Conne	ection	Material		Во	dy	Transmition Pressure			
Thre	aded	GG	G40	Glo	be	PN10 - PN16 - PN25			
				Available Diameters					
mm	20	25	32	40	50	65	80		
inch	3/4	1	11/4	1½	2	2½	3		

Victaulic

Conne	ection	Mate	erial	Во	dy	Transmition Pressure			
Victa	aulic	GG	G40	Globe			PN10 - PN16 - PN25		
				Available I	Diameters				
mm	50	65	80	100	150	200			
inch	2	21/2	3	4	6	8			

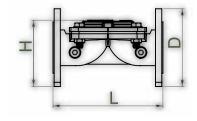

Angled

Conne	onnection Material		Во	dy	Transmition Pressure	
Flan Thre	ged aded	GG	G40	Globe		PN10 - PN16 - PN25
				Available I	Diameters	
mm	50	80	100	150		
inch	2	3	4	6		

Hydraulic Performance

	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm
Valve Diameter	2	50	2½	65	3	80	4	100	5	125	6	150	8	200	10	250	12	300
Kv m³/h @ 1bar	8	8	8	8	17	74	18	37	18	37	4	19	11	39	16	98	22	76
Cv gmp @ 1psi	10	02	10)2	20)1	2′	16	2′	16	48	34	13	16	19	61	26	29

 \mathbf{Kv} : Valve flow coefficient (flow rate at 1 bar pressure loss m^3/h @ 1 bar)


Cv: Valve flow coefficient (flow in pressure loss of 1 psi GPM @ 1 psi)

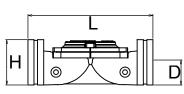
Q: Flow (m³/h, gpm)

Cv = 1,155Kv ΔP: Pressure Loss (bar, psi) G: The specific gravity of water(Water=1.0)

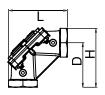
Fire Systems

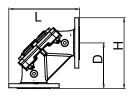

Sizes and Weights

Flanged


D	N)	Į.	L		ł	Wei	ght
inch	mm	inch	mm	inch	mm	inch	mm	Lbs	Kg
2	50	6,50	165	8,66	220	5,87	149	17,60	8,00
21/2	65	7,28	185	8,66	220	6,06	154	21,60	9,80
3	80	7,87	200	11,26	286	6,81	173	38,80	17,46
4	100	8,66	220	12,99	330	6,81	173	46,47	29,08
5	125	9,84	250	14,49	368	8,35	212	62,30	28,25
6	150	11,22	285	15,51	394	12,80	325	114,40	51,90
8	200	13,38	340	18,19	462	14,96	380	200,80	91,10
10	250	15,94	405	21,46	545	19,09	458	332,90	151,00
12	300	18,11	460	22,19	582	19,69	500	392,90	178,20

Threaded

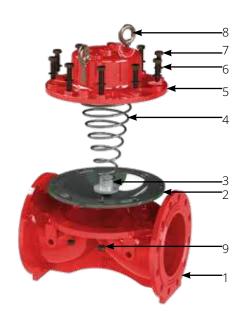


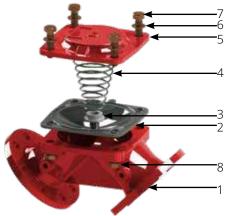

D	N	[)	L		ŀ	1	Wei	ght
inch	mm	inch	mm	inch	mm	inch	mm	Lbs	Kg
3/4	20	0,9	23	5,2	132	2	50	2,2	1
1	25	0,9	23	5,2	132	2	50	2,2	1
11⁄4	32	1,35	34	6,8	173	3,6	92,3	6,3	2,85
1½	40	1,35	34	6,8	173	3,6	92,3	5,8	2,65
2	50	1,65	41,5	7,3	186	4,4	112	9	4,1
21/2	65	1,8	46	8,9	226	4,6	118	11,7	5,3
3	80	2,05	52,5	12,5	318	5	127	26,4	12

Victaulic

	D	N	[)	l	-	Н		Wei	ght
	inch	mm	inch	mm	inch	mm	inch	mm	Lbs	Kg
	2	50	1,18	30	7,24	184	3,11	79	8,6	3,9
	2½	65	1,46	37	8,9	226	3,74	95	9,92	4,5
7	3	80	1,77	45	11,42	290	3,7	94	13	5,9
1	4	100	2,26	57,5	12,48	317	4,19	106,5	13,6	6,2
	6	150	3,3	84	17,87	454	5,24	133	66	30
	8	200	4,53	115	21,40	544	13,10	332	143,3	

Angled


	D	N)		_	ľ	1	wei	gnt
ס	inch	mm	inch	mm	inch	mm	inch	mm	Lbs	Kg
Q	2	50	4,4	112	6,05	154	6,05	154	9,47	4,3
e Q	3	80	7,1	180	9,45	240	9,45	240	29,3	13,3
Threa										
_	2	50	4,4	112	7,44	189	7,44	189	19,07	8,65
ed	3	80	7,1	180	10,95	278	10,95	278	39,02	17,7
Flang	4	100	7,48	190	12	305	12	305	60,19	27,3
윤	6	150	9,05	230	14,92	379	14,92	379	106,26	48,2



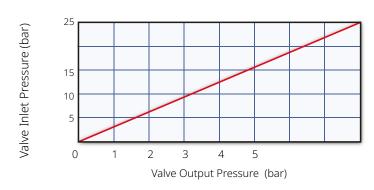
Main Parts

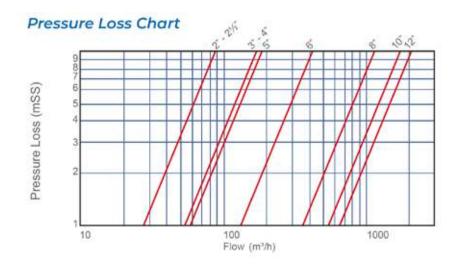
Flanged

Nr.	Material Name	Type Of Material
1	Body	GGG40
2	Diaphragm	Natural Rubber
3	Spring Seat	Polyamide
4	Spring	SST 302
5	Cover	GGG40
6	Washer	8.8 Coated Steel
7	Bolt	8.8 Coated Steel
8	Lifting Eyebolts	8.8 Coated Steel
9	Nut	8.8 Coated Steel

Threaded - Victaulic - Angled

Nr.	Material Name	Type Of Material
1	Body	GGG40
2	Diaphragm	Natural Rubber
3	Spring Seat	Polyamide
4	Spring	SST 302
5	Cover	GGG40
6	Washer	8.8 Coated Steel
7	Bolt	8.8 Coated Steel
8	Nut	8.8 Coated Steel


Fire Systems


Technical Specifications

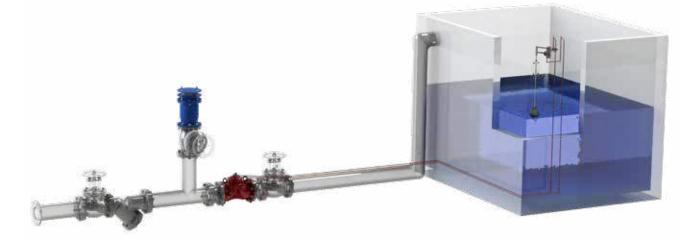
Technical Specifications

	Standard	0,7 - 16 bar (10 - 240 psi)
Operating Pressure	Low Pressure Range	0,5 - 10 bar (7,5 - 160 psi)
	High Pressure Range	0,7 - 25 bar (10 - 360 psi)
Tompovatuvo	Minimum Operating Temp.	- 10 °C (14 °F) DIN 2401/2
Temperature	Maximum Operating Temp.	80 °C (176 °F) DIN 2401/2
Commontion	Flanged	DIN 2501, ISO 7005 - 2
Connection	Threaded	ISO (BSP), ANSI (NPT)
Carragian	Standard	Ероху
Covering	Optional	Polyester
Hadaaalta Caasaa ahaa	Standard	Reinforced Nylon (Air Brake) Hydraulic Tube SAE J 844
Hydraulic Connections	Optional	Copper DIN1057
Actuator Type	With Single Control Chamber Aperture With Diaphragm	

Cavitation Chart

Differantial Float Level Control Valve

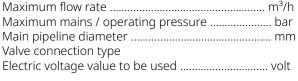
Hydraulic Control Valves - Fire Systems


The Differential Float Level Control Valve is the hydraulic control valve designed to control water level in reservoirs and tanks continuously. Main valve is controlled by 2-way modulating type float pilot valve manually. Main valve mounted on reservoir and tank upstream is closed as fully sealed without causing surge when water level reaches to maximum level. Valve opening/ closing speed may be adjusted in set value. It may be used in the system by mounting horizontal or vertical positions.

Order Information

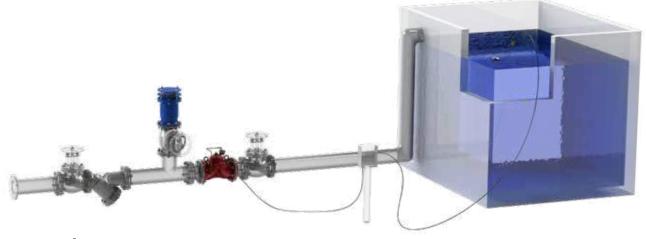
Please provide the following information in order

Maximum flow rate	. m³/h
Maximum mains / operating pressure	bar
Main pipeline diameter	mm
Valve connection type	
Desired level control range	m

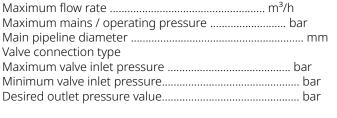

Electric Float Level Control Valve

Hydraulic Control Valves - Fire Systems

Electric Float Level Control Valve is a valve that constantly controls water level by electric float placed in the tank. When the water level at the bottom falls below the desired value, the electric floater sends a signal to the solenoid coil on the main valve. This allows the valve to open itself fully and keep the reservoir constantly full. When the water level reaches the maximum level, the electric switch sends a signal again to the solenoid coil and the valve closes itself. The valve can be operated on the system horizontally or vertically.


Order Information

Please provide the following information in order


Pressure Reducing Control Valve

Hydraulic Control Valves - Fire Systems

Pressure Reducing Control Valves are hydraulic control valves that reduce the input pressure value to the desired pressure value by means of a pressure reducer pilot mounted on it. The pressure reducer control valve constantly controls the output pressure value to be set without being influenced by the flow rate and inlet pressure values. When there is no flow in the system, the valve closes itself. When the valve inlet pressure value in the system falls below the set outlet pressure value, the valve opens itself. The valve can be used in horizontal or vertical position on the system.

Order Information

Please provide the following information in order

Hydraulic Check Valve

Hydraulic Control Valves - Fire Systems

Hydraulic Check Valve is hydraulically controlled check valve which operates with line pressure and prevents back-flow in system. When downstream pressure value exceeds upstream pressure value, valve is closed as wholly sealed without causing surge. When upstream pressure value exceeds downstream pressure value, check valve is opened by itself slowly. So it damps pressure surges formed during start-up.

Order Information

Please provide the following information in order

Quick Pressure Relief Control Valve

Hydraulic Control Valves- Fire Systems

The Quick Pressure Relief Control Valve is the safety control valve designed to protect system by releasing pressure surges to atmosphere quickly caused from sudden changes in water speed because pumps put into/out of service frequently in water network elevation lines. When network pressure goes beyond set point, valve opens by itself quickly and protects system by releasing over pressure. When line pressure decreases to normal level, it is closed slowly and automatically as wholly sealed without causing surge.

Order Information

Float Level Control Valve


Hydraulic Control Valves - Fire Systems

The Float Level Control Valve is the hydraulic control valve designed to control water level in reservoirs and tanks continuously. Main valve is controlled by 2-way modulating type float pilot valve manually. Main valve mounted on reservoir and tank upstream is closed as fully sealed without causing surge when water level reaches to maximum level. Valve opening/ closing speed may be adjusted in set value. It may be used in the system by mounting horizontal or vertical positions.

Order Information

Please provide the following information in order

Her Fabrika Bir Kaledir*

K. Otalist

*Every factory is a fortress